- トップ
- 企業・教材・サービス
- Appier社のAIサイエンティストが「ディープラーニングの進化」の考察を発表
2019年11月11日
Appier社のAIサイエンティストが「ディープラーニングの進化」の考察を発表
Appier Japanは8日、Appier社(エイピア)チーフAIサイエンティストのミン・スン氏の、「ディープラーニングはどのように進化を遂げたか」と題する考察の内容を発表した。
ミン・スン氏は、ディープラーニングのこれまでの進化を振り返るとともに、活用に際していくつか提言を行った。主な内容は以下の通り。
まず同氏は、コンピュータビジョンについて、人間が様々な機能を手動で設計する必要はなく、コンピュータはオブジェクトの特徴的な機能を自動的に学習する、とする。
そして、コンピュータビジョンで最も一般的なのが、顔認識。顔認識を使用すれば、スマホを見るだけでロックを解除することができる。一部の国境警備チームは、パスポートのスキャンと同様に顔認識を使用している。
また、アクティビティを認識することができることから、監視カメラを使用して人々を追跡するためにも使用されている。
身近な例では、キャッシュレスのAmazon Goで、バスケットに入れる製品を認識するために使用し、アイテムをスキャンせずにいくら請求すればよいかを認識している。
こうしたコンピュータビジョンは、ディープラーニングを活用することで実現する。ディープラーニングは「機械学習」が進化したもので、意思決定プロセスの数を増やし、「より深い」学習を達成するための手法。
「より深い」学習を実現するディープラーニングでは、「人工ニューラルネットワーク」というモデルが必要。「人工ニューラルネットワーク」では、人間の脳がどのように機能するかを模倣している。
また、100%正確なモデルは存在しておらず、AIのエラー率が100分の1であっても、盲目的に信頼するのには注意が必要。音声認識も100%正確ではないため、認識されたテキストのスペル、文法、同音異義語、表現、文脈について、人間が常にチェックすることが大事だという。
AIが導く分析結果は、人間の下した結果が正しいかどうか判断するための参考に留めるべきで、AIと人間が下した判断結果が大きく異なる場合は、人間が下した決定プロセスを再度見直す必要がある。
AIに関しても繰り返しのテストを行い、10回テストして人間の判断よりも平均が良い場合、ようやく機能していることが判る。
とくに、医療診断では、1つの誤った決定が、判断プロセスにもたらす影響がかなり大きいため注意が必要。そのため、医師の判断は必須で、エラーの可能性を最小限に抑えるには、時間がかかるとしても人間の介入が不可欠だ、としている。
Appierは、AIテクノロジー企業として、企業や組織の事業課題を解決するためのAIプラットフォームを提供している。
関連URL
最新ニュース
- システム ディ、秋田県教育委員会が「School Engine Web出願システム」を導入(2025年12月5日)
- ICT教材「すらら」、不登校支援で導入自治体数・ID数ともに過去最高を記録(2025年12月5日)
- ガイアックス、石川・富山・福井の小中高校に起業家教育の講師を無償派遣(2025年12月5日)
- 計算力は高いのに自信のない日本の子どもたち、小4・中2国際調査からわかった意識と実力のギャップ =スプリックス教育財団調べ=(2025年12月5日)
- 就活生の67.4%が「資格は就職に有利になる」と回答 =Synergy Career調べ=(2025年12月5日)
- 保護者の4割以上が学童保育に「勉強」と「安心」の両立を要望 =NEXERとHokally調べ=(2025年12月5日)
- 大学受験、保護者が最も不安を感じるのは「高3の秋~冬」=塾選調べ=(2025年12月5日)
- テックタッチ、早稲田大学が独自の出張申請システムに「テックタッチ」導入(2025年12月5日)
- 次世代ロボットエンジニア支援機構、「女性エンジニアの増加」目指しロボット・AI教材普及のクラファンを開始(2025年12月5日)
- 小中生向けプログラミング教室「CodeCampKIDS」、Scratchプログラミングコースをフルリニューアル(2025年12月5日)













